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DISPERSION RELATIONS FOR COMPOSITE STRUCTURES. 

PART II. METHODS OF DETERMINING DISPERSION CURVES  

In the first part of the current review, the fundamental assumptions of the theoretical model of elastic waves propagation 

in multilayered composite material are presented. Next, the equations  which describe  elastic wave motion in the case of single 

orthotropic lamina are derived. In the second part of this work, the most commonly used method of determining dispersion 

curves for multilayered composite material are discussed, namely: the transfer matrix method (TMM), global matrix method 

(GMM), stiffness matrix method (SMM) and finally the semi-analytical finite element method (SAFE). The first three  

methods are based on the relationships  which are derived in the first part of this review. Moreover, TMM and GMM should 

be considered  numerically unstable in the case of a relatively large product value of wave frequency and the total thickness of 

the composite plate. However, SMM seems to be unconditionally stable. The last method is based on the finite element  

approach and it can be used in order to confirm the results obtained  using the analytical method. Finally, exemplary disper-

sion curves are presented. The dispersion curves are determined for the 8-th layer of the composite material, which is made of 

carbon fiber and epoxy resin. It is assumed that the wave front travels in an arbitrary direction. 

Keywords: Lamb waves, composite materials, anisotropic layer, dispersion curves, phase velocity, group velocity  

RÓWNANIA DYSPERSJI DLA STRUKTUR KOMPOZYTOWYCH. 
CZĘŚĆ II. METODY WYZNACZANIA KRZYWYCH DYSPERSJI 

W części pierwszej pracy omówiono założenia dotyczące teoretycznego modelu propagacji fal sprężystych 

w wielowarstwowych materiałach kompozytowych. Następnie wyprowadzono równania opisujące zjawisko propagacji fal 

sprężystych w pojedynczej warstwie o ortotropowych własnościach mechanicznych. W części drugiej przedstawiono podstawy 

najczęściej wykorzystywanych metod wyznaczania krzywych dyspersji dla ośrodków wielowarstwowych, a mianowicie: 

transfer matrix method (TMM), global matrix method (GMM), stiffness matrix method (SMM), a także semi-analytical finite 

element method (SAFE). Pierwsze trzy podejścia oparte są bezpośrednio na równaniach wyprowadzonych w części pierwszej. 

Metody TMM oraz GMM uważane są za numerycznie niestabilne w przypadku odpowiednio dużych wartości iloczynu 

częstotliwości i całkowitej grubości płyty kompozytowej. Natomiast wydaje się, że podejście SMM jest numerycznie 

bezwarunkowo stabilne. Ostatnia z wymienionych metod oparta jest na metodzie elementów skończonych i można ją 

efektywnie wykorzystać w celu potwierdzenia wyników otrzymanych przy użyciu poprzednio wymienionych algorytmów. 

Jako przykład pokazano krzywe dyspersji wyznaczone dla 8-warstwowego materiału kompozytowego wykonanego z włókna 

węglowego, przy czym założono, że czoło fali porusza się w dowolnie założonym kierunku. 

Słowa kluczowe: fale Lamba, materiały kompozytowe, warstwa anizotropowa, prędkość fazowa, prędkość grupowa 

INTRODUCTION  

In the case of multilayered composite materials,  

determining dispersion curves should be considered  

a challenging task. The difficulties are mainly caused 

by numerical instabilities, significant differences  

between the stiffness of the adjacent layers and the 

strong orthotropic mechanical properties of the layers. 

Chronologically, the first method is the transfer matrix 

method, also considered the simplest, however, in com-

posite material, which consists of strongly orthotropic 

plies, the problem of numerical instabilities is espe-

cially visible. Better results can be obtained by  using 

the global matrix method, on the other hand, this  

approach is not very efficient and it seems very compli-

cated. In the case of materials with a large number of 

layers, obtaining a solution could be very time consum-

ing. The latest and a relatively modern method, the 

stiffness matrix method, is considered numerically  

unconditionally stable. Nonetheless, according to the 

authors' experience, in the case of significant differ-

ences between the stiffness of the adjacent layers,  

determining the dispersion curves could be problematic. 

Finally, the semi-analytical method is also described. 

The main advantage of this approach is that it can be 

applied with the use of commercial software, which is 
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based on the finite element method. Therefore, it can be 

used in order to confirm results obtained with the use of 

the above mentioned analytical method. To facilitate 

reading of further sections of this paper, the final rela-

tionships, namely equation (30), from the first part of 

the current review is rewritten below: 
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This relationship should be considered  the starting 

point in the discussion about the methods of determin-

ing dispersion curves. 

TRANSFER MATRIX METHOD 

According to the review by Lowe [1], the first paper 

devoted to deriving the equation of wave propagation in 

multilayered media was published by Thompson [2] in 

1950. He introduced the so-called transfer matrix, 

which relates the displacement and stress at the top and 

bottom of the layer. The matrices for any number of 

isotropic layers could be coupled into one. Then, the 

dispersion curves can be obtained by applying  appro-

priate stress boundary conditions. Thompson's approach 

was corrected in 1953 by Haskell [3]. However, this 

approach is limited to  materials where all the layers are 

made of isotropic materials. Nayfeh [4, 5] extended the 

transfer matrix method to the case of composite materi-

als, where the layers are made of anisotropic materials. 

Generally,  relationship (1) can be written in the follow-

ing form: 

 { } [ ][ ]{ }.
kkkk

UDXP =   (2) 

Note that elements of  diagonal matrix [Dk] depend  

on coordinate x'3. In the case of the top surface of the  

k-th layer, where local coordinate x'3 = 0, matrix [Dk] is 

the identity matrix. Therefore, the above relation can be 

simplified: 

 { } [ ]{ }kk

top

k UXP = . (3) 

The superscript 'top' denotes the top surface. Next, 

in the case of the bottom surface, superscript 'bot', 

where x3 = dk,  relation (2) can be written as follows: 
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UDXP =  (4)  

By combining relations (3) and (4), the relationship, 

which relates the displacement and stress on the top 

surface at x'3 = 0 to those on the top surface at x'3 = dk, 

is obtained: 
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 (5)  

Matrix [Tk] is called the transfer matrix for layer k.  By 

applying the above procedure for each layer, it is possi-

ble to relate the displacements and the stresses at the 

top and bottom surface of the analyzed composite mate-

rial. It can be done by multiplying  particular transfer 

matrices: 

 [ ] [ ]∏
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1

. (6) 

According to Giurgiutiu [6], the total transfer matrix 

expression is: 
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To determine the dispersion curves, stress free 

boundaryconditions have to be applied. It leads to the 

characteristic equation: 

 [ ]( ) .0det =
σu
T  (8) 

Unfortunately, TMM for higher frequencies and 

thicker plates reveals numerical instabilities (fd problem 

[6]), especially, in the case of strongly orthotropic ma-

terials. Thus this method, due to its relative simplicity, 

can be used only for estimating the frequency when 

a L1, SV1 or SH1 wave mode appears. However, there 

are some works devoted to the improvement of numeri-

cal stability in the case of the Thomson-Haskell formu-

lation. The papers by Castings and Hosten can be cited 

here [7-9]. The first computer programs for multilay-

ered materials were created in the 1960s [10-12]. 

GLOBAL MATRIX METHOD 

The global matrix formulation was proposed in 1964 

by Knopoff [13]. At the beginning, this method was 

used in the case of isotropic layers (Lowe [1], Pav-

lakovic [14], Demcenko and Mazeika [15], Schwab 

[16], Schmidt and Tango [17]). However, now this 

method is also used in the case of composite materials 

(Pant et al. [18, 19]). It is worth mentioning here that 

commercial software DISPERSE [20] based on this 

method is available. In order to derive the GM formula-

tion [18] we recall relation (2). For  interface 2 (Fig. 5 

in the first part of the review), which consists of the 

bottom surface of  layer 1 and the top surface of layer 2, 

the displacement and stresses at the interface can be 

expressed as: 

{ } [ ] [ ] { } { } [ ] [ ] { }toptoptoptopbotbotbotbot
UDXPUDXP

22221111
, ==

  (9) 



Dispersion relations for composite structures. Part II. Methods of determining dispersion curves 

Composites Theory and Practice  16: 3 (2016)  All rights reserved 

149 

Next, assuming that the displacements and stresses 

are continuous, the above relations can be rewritten in 

the following way [18]: 
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where [Z1]
bot
 = [X1]

bot
 [D1]

bot
, [Z2]

top
 = [X2]

top
 [D2]

top
. 

The above procedure can be repeated for all the layers 

to form the Global Matrix. Generally 6(n-1) equations 

with 6n unknowns for six partial waves are obtained. If 

the considered composite material is surrounded by 

vacuum and, for example, consists of 3 layers, the final 

form of the Global Matrix takes the form: 
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where {Pi1}, {Pi2} are the vectors containing the dis-

placement and stresses on the top and bottom surfaces 

of the composite material and subscript i means inter-

face. For Lamb waves, the stress components are zero 

on these surfaces. Neglecting the displacement compo-

nents from the top and bottom surfaces of (11), a new 

matrix is obtained, namely [19]: 
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where: 
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A nontrivial solution of (12) exists if the determi-

nant of  global coefficient matrix [Z] is equal to zero: 

 [ ]( ) .0det =Z  (14) 

It is worth  pointing out here that the numerical solu-

tion of equation (14) needs an appropriate algorithm 

[21]. During the solution process matrix [Z] is fre-

quently close to being singular. Moreover, searching 

algorithms have to rely on precise estimation, using 

complex numbers, of the solution close to singularity in 

order to converge. In the case of determining dispersion 

curves, the whole process is repeated many times with-

out failure. According Love [21], the most effective 

algorithm is the reduction part of the Gaussian elimina-

tion scheme. 

STIFFNESS MATRIX METHOD 

In order to avoid any numerical instabilities, which 

are the main disadvantages of  TMM, Kausel [22], 

Wang and Rokhlin [23-25] introduced the Stiffness 

Matrix Method. In contrast to TMM, the Stiffness Ma-

trix relates the stress components on the top and bottom 

surface of a particular layer to the displacement compo-

nents on the top and bottom surface. This change makes  

this method  unconditionally numerically stable and  

slightly more computationally efficient than the TMM 

method. Generally, SM can be written as [26]: 
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Matrices [D]
top
, [D]

bot
 contain the coefficients asso-

ciated with stresses and matrices [PS]
top
, [PS]

bot
 repre-

senting  the coefficients associated with displacements. 

[H]
top
, [H]

bot
 denote the diagonal matrix elements in (2). 

Finally, matrices [A]k and [B]k take  the following forms 

[27]: 
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In order to obtain the stiffness matrix for the whole 

composite material, an advanced recursive algorithm 

has to be applied [24]. Let us consider two adjoining 

layers (1, 2), namely: 
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where the subscripts denote the interfaces. By exclud-

ing {σ}1 and {u}1 from the first relation and substituting 

it in the second one, the matrix which relates {σ}0 {u}0 

to {σ}2 {u}2, is obtained. This combined matrix is an 

SM for these two bonded layers, namely: 
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Denoting the SM obtained by [K]
A
 and the SM for 

the third layer by [K] = [K]
B
, we can recursively apply  

relation (19) to obtain the global stiffness matrix, which 

relates the stresses to the displacement for the top  

and bottom surface of the whole composite plate. It is 

worth stressing here that [24]: “submatrices [K]
B
11 and 

[K]
A
22 will approach semi-space stiffness with a thick-

ness increase. Therefore, the inverse matrix in (19),  

([K]
B
11 – [K]

A
22)

−1
, will always be regular. Thus, the 

recursive algorithm maintains the regularity of the layer 

stiffness matrix.” The wave characteristic equation for 

the whole composite structure is obtained from the total 

stiffness matrix. Assuming that the stress components 

on the top and bottom surfaces are equal to zero, the 

Lamb wave dispersion equation is: 

 [ ]( ) .0det =K  (20) 

Finally, in order to find the solution of (20), the de-

terminant of the 6x6 matrix has to be computed. In 

contrast to  TMM, the solution to this problem requires 

the use of a suitable numerical procedure. 

SEMI-ANALYTICAL FINITE ELEMENT METHOD 

The above discussed methods should be considered 

as  analytical methods and they can be used only in the 

case of simple structures like plates or cylinders. In the 

case of structures of an arbitrary shape, the numerical 

method can be applied. SAFE is the method based on 

the finite element approach. The groundwork of this 

algorithm was formulated in 1971 by Nelson and co-

authors [28]. The FE approach method has been suc-

cessfully applied by numerous authors in the case of 

isotropic thin-walled structures, beams with different 

cross sections [29-32] or anisotropic shells and rods 

[33]. The main advantage of this approach is that in 

order to determine dispersion curves, commercial FE 

systems can be used, for example ANSYS [34] or 

ABAQUS [35]. The short description of the fundamen-

tals of this method is taken from Sorohan et al. [36] and 

Kalkowski [37]. The general motion equation of a non-

gyroscopic finite element model can be written as: 

 [ ]{ } [ ]{ } [ ]{ } { },FuKuCuM =++ &&&  (21) 

where [M] is the structural mass matrix, [C] is the struc-

tural viscous damping matrix and [K] is the structural 

stiffness matrix. {F} is the vector of applied loads. {u} 

is the displacement vector and its time derivatives, re-

spectively. In further analysis, it is assumed that damp-

ing is neglected, i.e. [C] = 0. The investigated structure 

is considered as a set of identical, periodic elements as  

shown in Figure 1. 

 

 
Fig. 1. Several coupled periodic elements and FE mesh [36] 

Rys. 1. Kilka elementów periodycznych oraz siatka MES [36] 

It should be emphasized here that the number and 

coordinates of nodes on the left and right boundaries 

have to be identical. Hence, the number of degrees of 

freedom (DOF) on the left and right boundaries are n1 = 

= n2 = n, whereas the total number of DOF inside the 

periodic element is denoted as nj. Furthermore, it is 

assumed that the displacement field is in the following 

form: 

 ( ) ( ) )(
321321 ,,,,

txi
eUUUuuu
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= , (22) 

where ξ is the wave number and ω is the circular fre-

quency. When the periodic element vibrates harmoni-

cally with circular frequency ω,  motion equation (21) 

takes the following form [39]: 
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where the symmetry of appropriate matrices are out-

lined. When a free wave travels through an infinite 

structure, then {Fj} = {0}. However, the nodal forces 

on  boundaries {F1}, {F2} are not equal to zero. These 

forces are responsible for transmitting the wave motion 

from one periodic element to another.  Bloch's theorem 

[38] says that the ratio between the corresponding dis-

placement in adjacent periodic elements is equal to e
µ
, 

where µ = iξL and L is the length of the periodic ele-
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ment (Fig. 1) [39]. Thus the nodal displacement and 

nodal forces on boundary 1 and 2 are related as follows: 

 { } { } { } { }.,
1212
FeFUeU

LiLi ξξ
−==  (24) 

Next, it is assumed that e
iξL
= 1. Hence ξL = ±2pπ,  

p = 0, 1, 2, … ∞. Now, relations (24) become very  

simple , namely: 

 { } { } { } { }.,
1212
FFUU −==  (25) 

Thus, the nodal displacement on boundaries 1 and 2 

can be rewritten in matrix form as follows: 
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where [I] is the identity matrix and [Q] is the coupling 

matrix. Substituting (26) into (23) and under the condi-

tion that {F2}= – {F1}, the following eigenvalue prob-

lem is obtained: 
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The solution of the above problem has N = n + nj 

eigenvalues ωp
2
 and associated eigenvectors φp. Accor-

ding to [36], these eigenvectors are orthogonal with 

respect to the mass and stiffness matrices. Usually, they 

are arranged in ascending order, namely: ω1

2
 ≤ ω2

2
 ≤ 

ω3

2
 ≤ … ωN

2
. Keeping in mind that the wave number is 

equal to ξ = 2π/λ and ξL = ±2pπ, the lengths of the 

traveling waves, described by  eigenvectors φp, are: 

 .,...,2,1,0, ∞== p
p

L
p

λ  (28) 

The corresponding following phase velocities can be 

determined as: 

 
π

ω
λ

2
,

p

pppp
ffc ==   (29) 

whereas the group velocities can be estimated with the 

use of finite difference schema. Finally, it is worth 

stressing here that the case when p = 0, λ = ∞, corre-

sponds to the case of  cut on frequencies [36]. In the 

work by Sorohan et al. [36] other examples are also 

presented, namely: isotropic plate, isotropic circular and 

square pipe and layered composite plate. In the all the 

studied cases, the obtained solutions agree with the 

results, which are obtained with the use of a different 

method. Nevertheless, in the case of a three-dimen-

sional FE model of a circular or square pipe, the num-

ber of solid elements is very large. Hence, the numeri-

cal analysis takes a great deal of time and thus its 

efficiency is not obvious. 

NUMERICAL EXAMPLE OF DETERMINING 

DISPERSION CURVES 

Exemplary dispersion curves are determined for the 

8-th layer composite plate, which is made of carbon 

fiber/epoxy resin, namely Fibers T300, Matrix N5208. 

The total thickness of the plate is equal to d = 2 mm. 

The plate consists of 8 layers with following stacking 

sequence [0°, 90°, 0°, 90°, 0°, 90°, 0°, 90°]. The layers 

also have identical thickness dk = 0.25 mm. The as-

sumed mechanical properties of the layer are as fol-

lows: E1 = 181 GPa, E2 = 10.3 GPa, G12 = 7.17 GPa, 

v12 = 0.28 and density ρ = 1.6 g/cm³. It is worth noting 

here that the carbon layers are strongly orthotropic.  

SMM is used in order to determine the dispersion 

curves. In order to find the solution of the studied prob-

lem, an appropriate computer program is developed 

with the aid of SCILAB free software. In order to find 

the solution of the wave characteristic equation the 

bisection method is applied. The numerical algorithm of 

determining dispersion curves is adopted from the work 

by Lowe [1]. Although this work concerns composites  

where all the plies have isotropic mechanical properties, 

the algorithm described there can also be used in the 

case of arbitrary composite materials. The obtained 

results are depicted in Figure 2. It is assumed that the 

wave front propagates with  angle φ = 45° with respect 

to the global coordinate system.  

 

 

 

Fig. 2. Phase and group velocities. Layered composite [0°, 90°, 0°, 90°, 

0°, 90°, 0°, 90°]. Wave  propagation angle φ = 45° 

Rys. 2. Prędkości fazowe i grupowe. Laminat [0°, 90°, 0°, 90°, 0°, 90°, 

0°, 90°]. Kąt propagacji fali φ = 45° 
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The initial phase velocity for the L0 wave mode is 

equal to c = 5.95 km/s. For the frequency, which is 

close to f ≈ 600 kHz, the phase velocity suddenly de-

creases. For  higher frequencies its value is almost con-

stant and equal to c ≈ 1.75 km/s. The behavior of the 

fundamental shear horizontal mode SH0 is similar to 

the L0 wave mode. Additionally, its initial velocity  

c = 5.4 km/s. For frequency f > 1.2 MHz, a sudden drop 

is visible, which is similar to the fundamental symmet-

ric mode L0 with frequency f > 600 kHz. It is also  

characteristic in the case of group velocities of L0 and 

SH0 modes. For the low frequency, the SV0 wave  

mode is strongly dispersive, however, for the higher  

frequency its phase velocity is almost constant and its 

value is equal to c ≈ 1.84 km/s. Qualitatively, the  

obtained dispersion curves are very similar to those 

which are presented in the first part of this review for 

aluminum alloy (Figs. 1 and 2). The number of higher 

modes is equal to eight. Nonetheless, it is not possible 

to distinguish whether they are the symmetric (L), shear 

horizontal (SH) or shear vertical (SV) wave mode. 

FINAL REMARKS 

In the second part of this review,  three analytical 

approaches for determining wave dispersion curves are 

presented, namely the transfer matrix method, global 

matrix method and stiffness matrix method. Besides the 

mentioned methods, one approach, which is based on 

the finite element method, is discussed. It seems that the 

stiffness matrix method is the most effective. It is rela-

tively simple and, what is the most important, it is nu-

merically unconditionally stable. The semi-analytical 

method can be applied with the use of commercially 

available software based on the finite element method. 

Thus it can be used in order to confirm  results obtained 

with the use of any other method. 
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